Name:		Class:		Date:	ID: A
Acid I	Base: Multiple choic	e Practice Standa	rd #8		
	le Choice the letter of the choice to	hat best completes the	statemen	t or answers	the question.
<u>B</u>	Which list includes a. OH, HPO ₄ ³ - b. F, SO ₄ ² , and HPO ₄ c. OH, SO ₄ ² , and 3 3. (#8-5)	c acid in water? aree acids: HF, HSO ₄ -, a conly conjugate bases of O ₄ ²⁻ PO ₄ ³⁻	of the acid d. e.	ds given abov OH ⁻ , SO ₄ ²⁻ , H ₂ F ⁺ , H ₂ SO ₄	e? and HPO4 ²⁻ , and H ₃ PO4
	Which is always a p I. a salt II. additional water III. a solution whos a. I only b. III only c. II and III only 4. (#8-3) Which applies to a control of the sale	e pH is 7	d e.	I and II only I, II, and III	
	III. Of all ions and mo a. I only b. III only c. II and III only 5. (#8-3) Which relation acetic acid, CH ₃ COO Ka = 1.8 x 10 ⁻⁸ for aco a. [CH ₃ COO ⁻] < Ka b. [CH ₃ COO ⁻] = [CH ₃	ion of NH ₃ is nearly 100 olecules present, the great onship gives a correct of OH? etic acid	ntest numb d. e.	I and II only I, II, and III on of some of [CH ₃ COO-]	the species found in an aqueous solution or
		poest comparison of the , KHC ₂ O ₄ , H ₂ C ₂ O ₄ O_4 = H ₂ C ₂ O ₄ O_4 >H ₂ C ₂ O ₄	d. e.	$K_2C_2O_4 = KH$	present in separate 1.0M solutions of these $C_2O_4 < H_2C_2O_4$ $C_2O_4 = H_2C_2O_4$
			1		

- Name:
 - 7. (#8-5) Which range includes the pH that results when 0.10 mole NaOH is added to 100 ml of 1.0M HCl solution? (pencil out the math)
 - a. between 1 and 4
 - b. between 4 and 6.5
 - (c.) between 6.5 and 7.5

- d. between 7.5 and 10
- e. between 10 and 14

In a titration 20mL of acid is titrated with .1M NaOH. The results were listed below.

8. (#8-6) At point A in the titration the species in highest concentration is (see graph)

(a) HX

c. H₃O⁺

h X

- d. OH-
- 9. (#8-6) The concentration of the acid is (see graph)
 - a. 0.7M

арп) с. .007

(b) .07

- .d. 7
- 10. (#8-6) At what point will the H^+ = HX (see graph)
 - a. A

c. C

В

- d. D
- 11. (#8-6) The conjugate of the acid is a(see graph)
 - a. weak acid

c. strong acid

weak base

d. strong base

Acid (HX) has a Ka value of 1.5E-4.

12. (#8-4) A .5M concentration of HX will have a pH in the range of

- à. 0-3
- 4-6

- c. 8-11
- d. 12-14

					E .
	/// C) TOTTT	and X- are present in	.1		fr *11.1
12	7#X_6\ IT II Y	and X are precent ii	i the came co	incentrations the n	H range Will he
LJ.	1#0"011111/	and a are present in	i uio saino co	moonidations die p.	
	A	1		1	

(a.) 4-6 b. 7 c. 8-11

14. (#8-6) 0.5M of NaX will have a pH range in the

à. 3-6

(c) 8-11

b. 7

d. 12-14

15. (8-2) If [HX] < [X-] the reaction will be

a. basic

b. acidic

c. weakly basic

12-14

d.) depends on concentrations.

PH VERSUS VOLUME TITRANT ADDED

A 50.0 mL sample of a Weak acid, HA, of unknown molarity is titrated, and the pH of the resulting solution is measured with a pH meter and graphed as a function of the volume of $0.100 \, M$ NaOH added.

16. (#8-6) Which of the following is the best particulate representation of the species (other than H2O) that are present in significant concentrations in the solution at point U in the titration?

 17. (#8-6)Is the acid being titrated more or less concentrated then base? a. More, because the volume of the base is less then the volume of acid at equivalence. (b.) Less, because the volume of the base is less then the volume of acid at equivalence c. More, because the volume of the acid is less then the volume of base at 	
equivalence. (b.) Less, because the volume of the base is less then the volume of acid at equivalence c. More, because the volume of the acid is less then the volume of base at	
b. Less, because the volume of the base is less then the volume of acid at equivalencec. More, because the volume of the acid is less then the volume of base at	
equivalence	
d. less, because the volume of the acid is less then the volume of base at equivalence	
18. $(\#8-6)$ At point Q in the titration, which of the following species has the highest concentration?	
<u>а.</u>) на с. н ₃ О ⁺	
b. A- d. OH-	
19. (#8-6) How many mL are needed to match the moles of acid with moles of base?	
a. 10 b. 20 c. 30 d. 40	
	£a.
20. (#8-4) A substance has a Ka of 1.0 E-7. If equal concentrations of this acid/conjugate base are measured pH the meter will measure	101
a. 1.0 b. 3.0 (c) 7.0 d. 14.0	
21. (8-4) A substance has a Ka of 1.0 E-7. If the concentration of the acid is greater then the concentration of base the resulting pH will be	f the
(a) acidic, due to concentration only	
b. basic, due to the concentration and larger Kb	
c. 7.0, due to Ka only	
d. 14.0 due to concentration and larger Kb	
22. (#8-3) A solution has a [HA] = 1M and an [A-] = 2M and the solution is measuring a pH of 5.5. Which of	f the
following is true? a. nonsense. This solution must be basic.	
a. nonsense. This solution must be basic.b. The solution is actually basic, the pH is just reading the pOH.	
c. The solution is actually basic, the pit is just reading the point.	
d. The solution is acidic due to a higher Ka of the acid.	

acid 1

b. acid 2

a.

The pH of solutions of four acids prepared at various concentrations were measured and recorded in the table above. The four acids are, in no particular order, chlorous, hydrochloric, lactic, and propanoic.

Concentration (M)	pH of Acid 1	pH of Acid 2	pH of Acid 3	pH of Acid 4
0.010	3.44	2.00	2.92	2.20
0.050	3.09	1.30	2.58	1.73
0.10	2.94	1.00	2.42	1.55
0.50	2.69	0.30	2.08	1.16
1.00	2.44	0.00	1.92	0.98

23.	(#8	-2) For which acid is the value of the acid	dissoc	iation constant, K_a , the smallest?
24.	a. b. (#8	1 2 -3) Which of the following acids is HCl?	c.	3 4)
25.	a. b.	1 2 5 mL sample of a 1.0 <i>M</i> solution of acid 1	c. d.	3 4
	mix the pH	following best explains what happens to to of the mixture when a few drops of 1.0 M O3 are added?	of the	
	a.	The pH of the mixture increases sharply because HNO3 is a strong acid.	<u>(c)</u>	The pH of the mixture stays about the same, because the conjugate base of acid 1 reacts with the added H ₃ O ₊ ions.
	b.	The pH of the mixture decreases sharply because H ₃ O+ ions were added.	, d.	The pH of the mixture stays about the same, because the OH-1 ions in the solution react with the added H ₃ O+ ions.
 26.	•	-4) Of the following species, which has th ilibrium?	e grea	test concentration in a 1.0 M solution of acid 1 at
	a. b.	OH ⁻¹ H₃O ⁺	C. d.	Acid 1 The conjugate base of acid 1

27. (#8-5) If equal volumes of the four acids at a concentration of 0.50 M are each titrated with a strong base,

acid 3

point.

All the acids will require the same

volume of base to reach the equivalence

which will require the greatest volume of base to reach the equivalence point?